4D Flow MRI-based pressure loss estimation in stenotic flows: Evaluation using numerical simulations.

نویسندگان

  • Belen Casas
  • Jonas Lantz
  • Petter Dyverfeldt
  • Tino Ebbers
چکیده

PURPOSE To assess how 4D flow MRI-based pressure and energy loss estimates correspond to net transstenotic pressure gradients (TPGnet) and their dependence on spatial resolution. METHODS Numerical velocity data of stenotic flow were obtained from computational fluid dynamics (CFD) simulations in geometries with varying stenosis degrees, poststenotic diameters and flow rates. MRI measurements were simulated at different spatial resolutions. The simplified and extended Bernoulli equations, Pressure-Poisson equation (PPE), and integration of turbulent kinetic energy (TKE) and viscous dissipation were compared against the true TPGnet . RESULTS The simplified Bernoulli equation overestimated the true TPGnet (8.74 ± 0.67 versus 6.76 ± 0.54 mmHg). The extended Bernoulli equation performed better (6.57 ± 0.53 mmHg), although errors remained at low TPGnet . TPGnet estimations using the PPE were always close to zero. Total TKE and viscous dissipation correlated strongly with TPGnet for each geometry (r(2) > 0.93) and moderately considering all geometries (r(2) = 0.756 and r(2) = 0.776, respectively). TKE estimates were accurate and minorly impacted by resolution. Viscous dissipation was overall underestimated and resolution dependent. CONCLUSION Several parameters overestimate or are not linearly related to TPGnet and/or depend on spatial resolution. Considering idealized axisymmetric geometries and in absence of noise, TPGnet was best estimated using the extended Bernoulli equation. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI

The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow M...

متن کامل

4D geomechanical simulations for field development planning

3D and 4D geomechanical can be time-consuming to build and calibrate. However, once such a model is built, it is relative straightforward to use this model for various field development and management applications. In so doing, the return on the initial investment of time and effort in the creation of a 4D geomechanical model can be substantial. I present a case study where a 4D geomechanical m...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

Numerical Simulation of Granular Column Collapses with Pressure-Dependent Viscoplastic Model using the Smoothed Particle Hydrodynamic Method

This paper presents a numerical analysis of granular column collapse phenomenon using a two-dimensional smoothed particle hydrodynamics model and a local constitutive law proposed by Jop et al. This constitutive law, which is based on the viscoplastic behaviour of dense granular material flows, is characterized by an apparent viscosity depending both on the local strain rate and the local press...

متن کامل

Letter by Dyverfeldt and Ebbers regarding article "Estimation of turbulent kinetic energy using 4D phase-contrast MRI: Effect of scan parameters and target vessel size".

Quantifying turbulence velocity fluctuation is important because it indicates the fluid energy dissipation of the blood flow, which is closely related to the pressure drop along the blood vessel. This study aims to evaluate the effects of scan parameters and the target vessel size of 4D phase-contrast (PC)-MRI on quantification of turbulent kinetic energy (TKE). Comprehensive 4D PC-MRI measurem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 75 4  شماره 

صفحات  -

تاریخ انتشار 2016